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Abstract 

Simulations of complex scientific phenomena involve the 
execution of massively parallel computer programs.  These 
simulation programs generate large-scale data sets over 
the spatio-temporal space.  Modeling such massive data 
sets is an essential step in helping scientists discover new 
information from their computer simulations.  In this 
paper, we present a simple but effective multivariate 
clustering algorithm for large-scale scientific simulation 
data sets.  Our algorithm utilizes the cosine similarity 
measure to cluster the field variables in a data set.  Field 
variables include all variables except the spatial (x, y, z) 
and temporal (time) variables.  The exclusion of the spatial 
dimensions is important since “similar” characteristics 
could be located (spatially) far from each other.  To scale 
our multivariate clustering algorithm for large-scale data 
sets, we take advantage of the geometrical properties of the 
cosine similarity measure.  This allows us to reduce the 
modeling time from O(n2) to O(n × g(f(u))), where n is the 
number of data points, f(u) is a function of the user-defined 
clustering threshold, and g(f(u)) is the number of data 
points satisfying f(u).  We show that on average g(f(u)) is 
much less than n.  Finally, even though spatial variables do 
not play a role in building clusters, it is desirable to 
associate each cluster with its correct spatial region.  To 
achieve this, we present a linking algorithm for connecting 
each cluster to the appropriate nodes of the data set’s 
topology tree (where the spatial information of the data set 
is stored).  Our experimental evaluations on two large-
scale simulation data sets illustrate the value of our 
multivariate clustering and linking algorithms. 

1. Introduction 

Scientists are able to simulate complex phenomena by 
utilizing massively parallel computer programs.  Such 
computer programs (a.k.a., simulation codes) produce tera-
scale data sets over the spatio-temporal space.  In order to 
discover new information from such large-scale data sets, 
scientists need efficient and effective modeling techniques 
[1, 6, 8, 14].  This paper describes a simple yet effective 
multivariate clustering algorithm for large-scale scientific 
simulation data in mesh format.  Mesh data sets usually 

vary with time, consist of multiple dimensions (i.e., 
variables), and contain interconnected grids.  Such grids 
break the mesh data into zones, in which data points are 
stored.  The shape of the zones can be regular (e.g., 
rectilinear) or irregular (e.g., arbitrary polygons).  Figure 1 
depicts part of the mesh produced from an astrophysics 
simulation of a star exploding.  Musick and Critchlow 
provide a nice introduction to scientific mesh data [15].   

 

Figure 1. Part of a Mesh Data Set Representing the  
Explosion of a Star 

Our multivariate clustering algorithm uses only a data 
set’s field variables to find “similar” behavior.  Field 
variables are all variables except the spatial (x, y, z) and 
temporal (time) variables.  For example, temperature, 
pressure, and density are considered field variables.  The 
exclusion of the spatial dimensions from the clustering 
process is important since “similar” characteristics could be 
far from each other in the spatial region (see Figure 2).  For 
example, the values of the field variables in the outer zones 
of a star are homogeneous even though spatially the zones 
can be far apart.   

To build clusters, we utilize a variant of the cosine 
similarity measure, which has been used in information 
retrieval applications [17].  We chose the cosine similarity 
measure instead of other metrics (such as the Euclidean 
distance metric) since our clusters will be used for query 
retrieval. 



 

Figure 2. A Mesh Data Set Representing a Star  
(Similar Zones Have Similar Colors.) 

To scale our multivariate clustering algorithm for large-
scale data sets, we take advantage of the geometrical 
properties of the cosine similarity measure.  Specifically, 
we utilize the user-defined clustering threshold to place a 
tighter upper-bound on the similarity of zones.  This allows 
us to reduce the clustering time from O(n2) to O(n × 
g(f(u))), where n is the number of data points, f(u) is a 
function of the user-defined clustering threshold, and g(f(u)) 
is the number of data points satisfying the new threshold 
f(u).  We empirically show that on average g(f(u)) is much 
less than n.  Section 2 describes our multivariate clustering 
algorithm in details. 

Even though spatial variables do not play a role in 
building our clusters, it is desirable to associate each cluster 
with its correct spatial region.  In particular, it is important 
for our clustering model to frame the answers to scientists’ 
queries in the spatial location of the original data.  To 
achieve this, we present a linking algorithm for connecting 
each cluster to the appropriate nodes of the data set’s 
topology tree.  Such a tree stores the spatial information of 
a data set by utilizing the intrinsic topology of the data 
given in the original scientific problem [5].  Our linking 
technique is embedded into our clustering algorithm.  That 
is, connections between a cluster and the correct nodes of 
the topology tree are made as the cluster is being 
constructed.  In this way, we are able to avoid traversing the 
clusters after they are made, which in turn reduces our 
execution times.  The main challenge for our linking 
algorithm is to find the best m nodes in the topology tree for 
a particular cluster, c, where m is much less then the 
number of zones in c.  Section 3 presents an in-depth 
discussion of our linking algorithm. 

In Section 4, we describe our experimental evaluations 
on two large-scale (astrophysics) simulation data sets.  We 
compare our results with a simple modeling technique, 
which propagates statistical information of the data up the 
topology tree.  Our results illustrate the value of our 
multivariate clustering and linking algorithms. 

Sections 5 and 6 discuss some related and future works, 
respectively.  Finally, Section 7 provides a summary of our 
work. 

2. Multivariate Clustering 

Our motivation for using a multivariate modeling 
algorithm is to capture the interrelationships among a mesh 
data set’s field variables in one metric.  In this way, we are 
able to collectively measure the similarity between zones.  
Eliassi-Rad, et al [8] presents our work using univariate 
modeling algorithms. 

Table 1 describes our multivariate clustering algorithm.  
The inputs to our algorithm are (i) the list of zones in the 
mesh data set and (ii) a user-defined clustering threshold in 
[0,1].  A clustering threshold of 0 indicates complete 
dissimilarity between zones.  On the other hand, a 
clustering threshold of 1 shows total similarity among 
zones.  The output of our algorithm is a list of clusters, 
where each cluster is represented by its (zone) population, 
N, and the following four vectors: 
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max , and 

→
min  are the mean, standard deviation, 

maximum, and minimum values of the zones represented in 
a cluster.  The variable m is the number of field variables in 
the mesh data set. 

Initially, we assume that all zones are available for 
clustering (i.e., they are assigned the color GREEN).  
Then, as each zone is placed in an appropriate cluster, it 
becomes unavailable (i.e., its color changes from GREEN 
to RED).  Our clustering algorithm iterates over all 
GREEN zones.  At each iteration, a variant of the cosine 
similarity measure [17] is used to find an appropriate 
cluster for each GREEN zone.  

Table 1. Our Multivariate Clustering Algorithm 

Inputs 
� List of zones 
� User-defined clustering threshold in [0, 1], where 0 and 

1 indicate complete dissimilarity and similarity, 
respectively. 

Output 
� A list of clusters 

Assumptions 
� A zone is either GREEN (i.e., available for clustering) 

or RED (i.e., already included in a cluster). 
� Initially, the color of all zones, z, is GREEN.  

 



Algorithm 
For each zone, z, do 
 If (z.color  GREEN) then 

a) C = new Cluster(); 
b) Add z to C; 
c) C.stats = z.stats; 
d) z.color = RED; 
e) For each zone, z , do 

i) If (z .color  GREEN) then 
(1) If (CosSim(z, z ) ��f(u)) then 

(a) Add z  to C; 
(b) Update C.stats; 
(c) z .color = RED; 

f)  Add C to the list of clusters; 

The standard cosine similarity measure between two 
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Since we cluster the zones of a mesh data, we need to 
represent each zone as a vector.  The vector associated with 
each zone contains the mean values of the field data points 
in that zone.  Our CosSim normalizes the elements of 

&

 

and 
&

 such that all the values of field variables are 
between 0 and 1.  This normalization step is important since 
the ranges of values for our field variables differ 
considerably.   

Traditionally, when ),(CosSim
&

&

 � user_threshold is 

true, 
&

 and 
&

are placed into one cluster.  Then, a new 

vector, 
&

, is placed in the same cluster as 
&

 and 
&

only if 
both of the following inequalities are true: 

• ),(CosSim
&&

 ��user_threshold, and 

• ),(CosSim
&

&

 ��user_threshold 
Since we have a huge number of zones to process, 
calculations of all pair-wise CosSim measures can be quite 
burdensome.  Furthermore, sampling from the mesh data is 
not an option since scientists are interested in outliers and 
do not tolerate results from sampled data.  Therefore, we 
tighten the similarity threshold so as to eliminate the need 
to compute all the pair-wise comparisons.  In particular, 
each new GREEN zone is only compared with the first 
zone that was added to the cluster.  We get our new 
threshold by first mapping the user-defined threshold from 

[0,1] to [-1,1].1  In particular, we use the following equation 
to do this mapping:  

new_user_threshold = (2 × user_threshold) – 1 
Then, we define our new threshold, f(u), to be: 

f(u) = f(new_user_threshold) = 
cos(0.5 × (cos-1(new_user_threshold))) 

Based on the geometrical properties of the cosine function, 
the new_user_threshold is always less than f(u).  So, we can 
use the following inequality:  

new_user_threshold < f(u) � CosSim(z, z ) 
Moreover, we are guaranteed that any new zone added to a 
cluster, C, satisfies the user-defined similarity measure.  
Figure 3 pictorially illustrates this fact.  Based on the user’ s 

threshold, any two vectors 
&

 and 
&

 are considered similar 

if and only if the cosine of the angle between 
&

 and 
&

 is 
greater than or equal to new_user_threshold.  In our 
clustering algorithm, if the angle between an arbitrary 
vector 

&

 and any vector in a cluster C, is half the size of 

the angle between 
&

 and 
&

, then 
&

 is safely added to the 
cluster C (without any additional pair-wise comparisons). 

 

Figure 3. User-Defined Threshold and Our Threshold 

The tightening of the similarity threshold helps us in two 
ways.  First, we do not spend time on pair-wise 
comparisons.  Second, we do not need to shuffle zones 
between clusters since our bound, f(u), eliminates zones that 
are on the cluster boundaries.  In the best case, our 
clustering algorithm runs in O(n) time, where n is the 
number of zones in the mesh data sets.  In the worst case, 
our algorithm runs in O(n2) time.  However, on average, our 
algorithm runs in O(n × g(f(u))) times, where g(f(u)) is the 
number of zones that satisfy the f(u) bound.  In our 
experimental results reported in Section 4, g(f(u)) is much 
less than n. 

                                                                 
1 The original user-defined threshold is in [0,1] (and not [-

1,1]) since it is easier for users to think in terms of the 
interval [0,1]. 

Our Threshold =0.5 ×  

cos-1(new_user_threshold) 

&

 

&

 

&

 

User-Defined Threshold =  

cos-1(new_user_threshold) 



3. Cluster-Topology Linking 

Even though spatial variables do not play a role in 
building clusters in our algorithm, it is desirable to 
associate each cluster with its correct spatial region.  In 
particular, it is important for our clustering model to return 
answers to scientists’  queries in the spatial region of the 
original mesh.  Since our mesh data have millions of zones, 
it would be very inefficient (and at times impossible) to link 
each cluster with all of its zones.  Therefore, we present a 
linking algorithm for connecting each cluster to a small set 
(e.g., 512) of nodes in the data set’ s topology tree.  A 
topology tree stores the spatial information of a data set by 
utilizing the intrinsic topology of the data given in the 
original scientific problem [5].  Figure 4 illustrates a 
topology tree, where the zones are agglomerated 
topologically to create interior cells.  Then, the interior 
cells are recursively agglomerated based on their topology 
until one only one cell (i.e., root cell) remains.   

 

Figure 4. A Topology Tree 

Figure 5 shows sample links between the list of clusters 
and the topology tree.  Our linking technique is embedded 
into our clustering algorithm.  That is, connections between 
a cluster and the correct nodes of the topology tree are 
made as the cluster is being constructed.  In this way, we 
are able to avoid traversing the clusters after they are made, 
which in turn reduces our execution times.  The main 
challenge for our linking algorithm is to find the “ best”  k 
nodes in the topology tree for a particular cluster, C, where 
k (e.g., 512) is much less then the number of zones in C 
(e.g., 1,625,000). 

Table 2 describes our linking algorithm.  When the list 
of links for a cluster is full, we traverse the topology and the 
list of links to find the lowest level topology node with the 
most number of descendents in the list of links.  Each link 
between a cluster and a tree node has a metric, called 
percentage_intersection, which measures the percentage 
intersection between the zones in the clusters and the 
descendents of a node.  For example, if a zone, z, is in 
cluster C and the list of links for C has a link connected to 

z, then that link’ s percentage_intersection is 100. This 
percentage_intersection metric measures the “ quality”  of a 
link.  A threshold can be placed on the 
percentage_intersection metric so that the trade-off 
between execution time and links to the best-fitting nodes 
can be exploited.   

 

Figure 5. Links Between List of Clusters and  
Topology Tree 

Table 2. Our Linking Algorithm 

Input 
� links = list of links for cluster, C 
� z = zone being added to C 

Output 
� Update links 

Algorithm 
If (links is not full) then 

• z.percentage_intersection = 100; 
• Add z to links; 
• Return links; 

Else 
• For l = 0 (leaf level) to r (root level), do 

(1) z.ancestor[l] = z’ s ancestor at l; 
(2) If (z.ancestor[l] is in links) then update 

z.ancestor[l].percentage_intersection; 
(3) Return links; 

• new_link = NULL; 
• For each link, j, in links, do 

(1) best_ancestor[j] = j’ s ancestor with the most 
number of descendents in links; 
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(2) If (best_ancestor[j].num_descendents �
MAX_NUM_DESCENDENTS) then  

(a) new_link = best_ancestor[j]; 
(b) break; 

• If (new_link  NULL) then  
(1) new_link = argmaxj∈ links best_ancestor[j]; 

• Clear all descendents of new_link from links; 
• Set new_link.percentage_intersection; 
• Add new_link to links; 
• Return links; 

Our linking algorithm performs quite well.  This is due 
to the very small number of levels in a topology tree 
(usually less than 20) and the small number of links chosen 
to connect a cluster to the topology tree (usually less than 
1000). 

4. Experimental Evaluations 

Our experiments describe the performance of our 
multivariate clustering algorithm with and without the 
linking algorithm on two large-scale simulation data sets.  
We also compare these performances to the topology-based 
algorithm, where the statistical information of the field 
variables is propagated upwards in the tree [5].  

4.1 Data Sets 

Table 3 describes the two mesh data sets used in our 
experiments.  Both data sets are a simulation of a star at a 
certain stage of its life and represent readings in point 
locations of a continuous medium. The data sets are 
represented as zones (i.e., small cubes with 8 nodes). 
Values of variables are associated either with each node 
(called a nodal variable) or with each zone (called a zonal 
variable).  The White Dwarf data set (see Figure 6) is a 
simulation of a star exploding.  The Djehuty data set (see 
Figure 7) is a simulation of a star at its mid-life. 

Table 3. Characteristics of Our Data Sets 

Data Set 
# of  

Zones 
# of 

Variables 
# of  

Time Steps 

White Dwarf 557,375 20 22 

Djehuty 1,625,000 18 16 

4.2 Evaluation Metrics 

We compare our different algorithms by using the 
following evaluation metrics in our experiments: 

• Metrics per time step 
o Number of clusters created 
o Average number of zones in clusters 
o Minimum number of zones in clusters 
o Maximum number of zones in clusters 

o Execution time for building clusters with and 
without the linking algorithm 

• Maximum level reached when linking clusters to 
topology tree 

• Minimum percentage_intersection at the 
maximum level reached 

• Maximum percentage_intersection at the 
maximum level reached 

 

Figure 6. The White-Dwarf Data Set 

 

Figure 7. The Djehuty Data Set 

4.3 Results 

Tables 4 and 5 list the results of our clustering algorithm 
without linking and with a user_threshold of 0.95 (in [0,1]).  
An intuitive way of thinking about the user_threshold is to 
state that the user requires all zones in a cluster to be 
(user_threshold × 100) percent similar.  So, when 
user_threshold is 0.95, the required similarity between 
zones in a cluster is 95%.  Our threshold tightens this 
percentage to 98% similarity between zones in a cluster.  
Note the small number of clusters that we are able to build 
from hundreds of thousands of zones.  It is also interesting 
to point out that for the White Dwarf data set when the star 
starts exploding at time step = 1, the number of clusters 
increases by a factor of 7.5.  On the other hand, since a 
major event does not occur in the Djehuty data set, there is 



no dramatic increase in number of clusters from one time 
step to the next.  This behavior is also evident in the  
minimum, average, and maximum number of zones in 
clusters (per time step). 

Table 4. Clustering on White Dwarf  
(user_thresold = 95% and f(u) = 98.5%) 

Time  
Step 

Execution 
Time 

Without 
Linking  

in Seconds 

# of  
Clusters 

Made 
from 

557,375 
Zones 

Min #  
of 

Zones  
in 

Clusters 

Avg #  
of 

Zones  
in 

Clusters 

Max # 
of  

Zones  
in 

Clusters 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

86.21 
204.79 
136.87 
179.61 
121.79 
158.31 
146.58 
119.34 
124.15 
129.85 
142.95 
94.02 

131.17 
143.77 
193.21 
150.41 
149.58 
125.67 
140.69 
78.48 

144.29 
154.90 

13 
98 
31 
30 
32 
32 
43 
41 
42 
42 
47 
33 
35 
32 
43 
45 
41 
41 
42 
34 
34 
30 

8121 
1 
4 
6 
9 
1 
1 
5 
7 
7 
3 
2 
3 
4 
1 
1 

40 
40 
8 
3 
2 

19 

42875.0 
5687.5 

17979.8 
18579.2 
17418.0 
17418.0 
12962.2 
13594.5 
13270.8 
13270.8 
11859.0 
16890.2 
15925.0 
17418.0 
12962.2 
12386.1 
13594.5 
13594.5 
13270.8 
16393.4 
16393.4 
18579.2 

110250 
136682 
186088 
151369 
150325 
149505 
143488 
136427 
133933 
133219 
116237 
167776 
176328 
217124 
171179 
170608 
170230 
169933 
132618 
226312 
226523 
235491 

Tables 6 and 7 list the results of our clustering algorithm 
without linking and with a user_thresold of 0.99 (in [0, 1]).  
The bound used by our clustering algorithm is 0.995 in [-1, 
1] (which is equivalent to 99.75% similarity within each 
cluster).  Again, there is a dramatic increase (by a factor of 
36.75) in the number of cluster made for the White Dwarf 
data set from time step = 0 to time step = 1 (because of the 
start of explosion in the star).  As expected, the execution 
times are also longer with the bound of 99.75% similarity as 
opposed to a bound of 98.5% similarity. 

Table 5. Clustering on Djehuty  
(user_thresold = 95% and f(u) = 98.5%) 

Time  
Step 

Execution 
Time 

Without 
Linking 

in 
Seconds 

# of  
Clusters 
Made 
from 

1,625,000 
Zones 

Min # 
of 

Zones 
in 

Clusters 

Avg # 
of 

Zones  
in 

Clusters 

Max # 
of 

Zones 
in 

Clusters 

0 
1 

578.95 
562.46 

14 
16 

4 
8 

116071 
101563 

387420 
379529 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

763.35 
800.39 
692.21 
532.98 
543.35 
542.96 
536.54 
538.26 
529.28 
541.39 
528.73 
527.83 
519.78 
531.86 

27 
46 
50 
49 
50 
53 
50 
52 
50 
48 
48 
48 
48 
48 

135 
96 
6 

36 
12 
1 

13 
4 

39 
196 

1 
102 
18 
3 

60185.2 
35326.0 
32500.0 
33163.3 
32500.0 
30660.4 
32500.0 
31250.0 
32500.0 
33854.2 
33854.2 
33854.2 
33854.2 
33854.2 

383366 
385078 
378161 
413040 
420249 
421951 
423756 
424303 
423165 
420973 
419518 
416561 
414733 
412607 

Table 6. Clustering on White Dwarf  
(user_thresold = 99% and f(u) = 99.75%) 

Time  
Step 

Execution 
Time 

Without 
Linking  

in Seconds 

# of  
Clusters 

Made 
from 

557,375 
Zones 

Min #  
of 

Zones 
in 

Clusters 

Avg # 
of 

Zones  
in 

Clusters 

Max #  
of 

Zones 
in 

Clusters 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

94.10 
1259.80 
622.99 
361.91 
323.89 
384.50 

1750.70 
2830.02 
3330.36 
4727.93 

28 
1029 
195 
201 
187 
178 
232 
251 
250 
262 

2801 
1 
1 
1 
1 
1 
1 
1 
1 
1 

19906.3 
541.7 

2858.3 
2773.0 
2980.6 

3131.32 
2402.5 
2220.6 
2229.5 

2127.39 

58800 
88947 
66281 
49470 
48781 
45454 
68549 
44835 
43742 
43486 

 
Table 7. Clustering on Djehuty  

(user_thresold = 99% and f(u) = 99.75%) 

Time  
Step 

Execution 
Time 

Without 
Linking  

in 
Seconds 

# of  
Clusters 

Made 
from 

1,625,000 
Zones 

Min #  
of  

Zones  
in 

Clusters 

Avg #  
of 

Zones  
in 

Clusters 

Max #  
of  

Zones  
in 

Clusters 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

939.44 
1148.61 
1650.27 
2288.11 
3382.61 
4047.15 
3612.45 
3924.49 
3480.74 
3089.25 
4928.18 
6628.21 
7688.57 
8484.75 
10922.2 
11319.7 

101 
152 
288 
511 
628 
633 
639 
651 
657 
641 
635 
620 
627 
605 
597 
594 

2 
4 
1 
3 
1 
1 
2 
1 
1 
2 
2 
1 
1 
2 
1 
1 

16089.1 
10690.8 
5642.36 
3180.04 
2587.58 
2567.14 
2543.04 
2496.16 
2473.36 
2535.10 
2559.06 
2620.97 
2591.71 
2685.95 
2721.94 
2735.69 

360000 
351174 
311071 
271924 
288192 
236610 
285632 
315302 
320345 
311419 
298567 
262135 
191985 
169082 
163168 
151338 



Tables 8 and 9 show the execution times of our 
clustering algorithm with and without linking on the first six 
time steps of White Dwarf and Djehuty, respectively.  In 
addition, they list the best and worst quality of links made 
between clusters and the topology tree.  As expected, it 
takes longer to build clusters and connect them to the 
topology tree.  However, the most increase is by a factor of 
5.6 (see time step = 0 in Table 8).  Both the White Dwarf 
and the Djehuty topology trees have a maximum of 11 
levels.  The highest level in the tree reached for a 
connection between a cluster and a node is 4 and 5 for 
White Dwarf and Djehuty, respectively.  This is quite good 
since a link accessing a high tree level usually has a worse 
fit (i.e., percentage_intersection) as compared to a link 
connecting to a lower tree level.  Even so, in both data sets, 
the maximum percentage_intersection at the highest level is 
100% for both data sets.  That is, for the Djehuty data set, 
there are nodes at level 5 which contain all the zones in a 
cluster.  The minimum percentage_intersection at the 
highest level is 25% and 12.5% for White Dwarf and 
Djehuty, respectively.  This minimum 
percentage_intersection value shows the quality of the 
worst links.  For example, in the Djehuty data set, there are 
nodes at level 5 which contain only 12.5% of the zones in a 
cluster.  

Table 10 illustrates the execution times of our 
multivariate clustering algorithm (without linking).  As was 
expected, the average value of g(f(u)), which is the number 
of zones satisfying our threshold f(u), is much less than n 
(the total number of zones).  In fact, the average g(f(u)) is in 
single digits while the average n is in hundreds of 
thousands.  

Table 8. Clustering on White Dwarf  
(user_thresold = 99% and f(u) = 99.75%) 

Time  
Step 

Execution Time 
Without Linking  

in Seconds 

Execution Time With 
Linking in Seconds 

0 
1 
2 
3 
4 
5 

94.10 
1259.80 
622.99 
361.91 
323.89 
384.50 

867.24 
1489.42 
763.51 
712.41 
672.48 
753.06 

Max Level 
Reached in 

Topology Tree 

Max Level 
Reached with 

Linking 

Min and Max % 
intersection at  

Max Level 

11 4 
Min = 25% and  

Max = 100% 
 

Table 9. Clustering on Djehuty  
(user_thresold = 99% and f(u) = 99.75%) 

Time  
Step 

Execution Time 
Without Linking  

in Seconds 

Execution Time With 
Linking in Seconds 

0 
1 
2 
3 
4 
5 

939.44 
1148.61 
1650.27 
2288.11 
3382.61 
4047.15 

2467.04 
2569.44 
2926.92  
3524.46  
4828.16  
5597.04  

Max Level in 
Topology Tree 

Max Level 
Reached with 

Linking 

Min and Max % 
intersection at  

Max Level 
11 5 Min = 12.5% and  

Max = 100% 

Table 10. Execution Times for Our Multivariate 
Clustering Algorithm (without Linking)  

and Average Value for g(f(u)) 

Data Set 
User  

Threshold 

Avg 
O(n) 

in 
Seconds 

Avg  
O(n × g(f(u))) 

in Seconds 

Avg 
g(f(u)) 

White 
Dwarf 

95% 232.32 732.09 3.15 

White 
Dwarf 

99% 281.33 2179.6 7.75 

Djehuty 95% 351.22 1249.6 3.56 

Djehuty 99% 763.91 1587.1 2.08 

Tables 11 and 12 compare our clustering algorithm with 
linking to the topology-based agglomeration algorithm 
(which produces the topology tree).  The number of nodes 
made by the topology-based agglomeration algorithm (in 
one level) is much larger than the number of clusters made 
by our clustering algorithm.  This is mostly due to the 
design of the topology-based agglomeration algorithm, 
which combines no more than eight zones at a time.  This 
strategy of agglomerating only small number of zones based 
solely on their topology also makes the topology-based 
agglomeration algorithm run faster than our clustering 
algorithm.  In short, Tables 11 and 12 show how well our 
clustering algorithm is able to agglomerate “ similar”  zones. 



Table 11. White Dwarf Data Set: Comparison of Our 
Multivariate Clustering Algorithm (with Linking) 

Versus the Topology-Based Agglomeration 

Data Set = White Dwarf 
Time Step = 0 

User Threshold = 99% 

Execution Time 
in Seconds 

Number of  
Agglomerations  

Made from  
557,375 Zones 

Topology-Based 
Agglomeration Algorithm 

753.44 73924 

Multivariate Clustering 
with Linking 

867.24 28 

 
Table 12. Djehuty Data Set: Comparison of Our 

Multivariate Clustering Algorithm (with Linking) 
Versus the Topology-Based Agglomeration 

Data Set = Djehuty 
Time Step = 0 

User Threshold = 99% 

Execution Time 
in Seconds 

Number of  
Agglomerations  

Made from  
1,625,000 

Zones 
Topology-Based 

Agglomeration Algorithm 
946.57 203125 

Multivariate Clustering  
with Linking 

2467.04 101 

5. Related Work 

Clustering algorithm such as BIRCH [20], 
CHAMELEON [13], CLARANS [16], CLIQUE [3], CURE 
[11], and DBSCAN [9] cannot be either used or scaled to 
our data sets for one or more of the following reasons: 

1. Our modeling techniques cannot require sampling.  
Scientists already sample the data produced by their 
simulation programs.  They do not accept models 
that sample the sampled data, particularly since they 
are mostly interested in outliers.  

2. We can not build clusters from zones in a subspace 
of the data since global properties are important. 

3. It is not desirable to use binning or histograms 
techniques since we are not supposed to assume an a 
priori distribution on the data.  Moreover, 
histograms are computationally expensive on high-
dimensional data sets. 

Our work is similar to Freitag and Loy [10].  Their 
system builds distributed octrees from large scientific data 
sets.  They, however, reduce their data by constraining the 
points to their spatial locations. 

STING [19] is also similar to our work except that it 
assumes that the distribution of the data is known.  Also, it 
has been tested only on small data sets containing only tens 
of thousands of data points.  DuMouchel, et al [7] present a 
method for compressing flat files; however, they use 
binning techniques to “ squash”  files, which impose an a 

priori distribution on the data   Finally, AQUA [2] uses 
cached summary data in an OLAP domain.  They also use 
sampling and histogram techniques, which are not 
acceptable in our models. 

6. Current and Future Work 

We are extending our algorithm to capture “ similar”  
behavior across time steps.  In particular, we would like to 
build a cluster hierarchy from the clusters made at each 
time step.  We conjecture that such hierarchies will speed-
up response times for queries on both the clusters and the 
topology tree since the cluster hierarchy will be shallow 
with manageable number of links to the topology tree.  
Moreover, we plan to develop tools, which track a 
particular zone across time steps.  Such tools will not only 
help scientists’  in their queries but also will provide us with 
insight into our clustering algorithm. 

We are examining other measures of interest to see how 
they compare to the normalized cosine similarity measure 
[12, 18].  In addition, we are looking into ways in which the 
inputted list of zones is efficiently perturbed before each 
clustering step.  Finally, we are investigating other 
modeling techniques for large-scale simulation data sets [4].  
Specifically, we are interested in models that (i) require 
only one sweep of data, (ii) are good at finding outliers, (iii) 
can be easily parallelized, and (iv) can efficiently answer a 
wide variety of queries. 

7. Conclusion 

Massively parallel computer programs (which simulate 
complex scientific phenomena) generate large-scale data 
sets over the spatio-temporal space.  Modeling such 
massive data sets is an essential step in helping scientists 
discover new information from these computer simulations.  
We present a simple but effective multivariate clustering 
algorithm for large-scale scientific simulation data sets.  
Our algorithm utilizes the cosine similarity measure to 
cluster the field variables in a data set.  The exclusion of the 
spatial location is important since “ similar”  characteristics 
could be located (spatially) far from each other.  To scale 
our multivariate clustering algorithm for large-scale data 
sets, we take advantage of the geometrical properties of the 
cosine similarity measure.  This allows us to reduce the 
modeling time from O(n2) to O(n × g(f(u))), where n is the 
number of data points, f(u) is a function of the user-defined 
clustering threshold, and g(f(u)) is the number of data 
points satisfying the threshold f(u).  We show that on 
average g(f(u)) is much less than n.  Finally, even though 
spatial variables do not play a role in building a cluster, it is 
desirable to associate each cluster with its correct spatial 
location.  To achieve this, we present a linking algorithm 
for connecting each cluster to the appropriate nodes of the 
data set’ s topology tree.  Our experimental evaluations on 



two large-scale astro-physics simulation data sets illustrate 
the value of our multivariate clustering and linking 
algorithms. 
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